(12)

United States Patent

Okumura

US009159078B2

(10) Patent No.:

(45) Date of Patent:

US 9,159,078 B2
Oct. 13, 2015

(54)

(71)

(72)

(73)

")

@

(22)

(65)

(1)

(52)

(58)

(56)

MANAGING IDENTIFIERS

Applicant: True Ultimate Standards Everywhere,
Inc., San Francisco, CA (US)

Inventor: Kenneth K. Okumura, Sunnyvale, CA
(US)
Assignee: True Ultimate Standards Everywhere,
Inc., San Francisco, CA (US)
Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 100 days.
Appl. No.: 13/839,192
Filed: Mar. 15,2013
Prior Publication Data
US 2014/0279989 A1l Sep. 18, 2014
Int. CL.
GO6F 17/30 (2006.01)
G060 30/02 (2012.01)
U.S. CL
CPC G060 30/0204 (2013.01); GO6Q 30/0201
(2013.01)
Field of Classification Search

USPC 707/609, 705
See application file for complete search history.

References Cited
U.S. PATENT DOCUMENTS
6,275,941 Bl 8/2001 Saito et al.
6,775,772 Bl 8/2004 Binding et al.
7,013,389 Bl 3/2006 Srivastava et al.
7,299,288 B2* 11/2007 Changetal. 709/229
7,376,827 Bl 5/2008 Jiao
7467402 B2* 12/2008 Pennington etal. 726/5
7,661,128 B2* 2/2010 Chenetal.coevvnvenrnne 726/5
Sofltware
Appzhjlon 2%%5

Mobile
Phone

Software
Application
224

Data
226

Software
{Application
234

7,685,025 B2* 3/2010 Islamccccoovevvvernnnnn 705/26.1
7,783,884 B2 8/2010 Nakano et al.
7,796,751 B2 9/2010 Gentry
7,813,299 B2 10/2010 Yumoto et al.
7,953,654 B2* 5/2011 Abifakerccccooviirenna. 705/35
8,024,781 B2* 9/2011 Saundersetal.c....... 726/5
8,190,675 B2* 5/2012 Tribbettccovvvevrrnnnn 709/203
8,281,389 B2 10/2012 Beaver et al.
8,341,711 B1* 12/2012 Pennington etal. 726/7
8,341,715 B2 12/2012 Sherkin et al.
8,392,255 B2* 3/2013 Pradeep et al. .. 705/14.42
8,396,744 B2* 3/2013 Pradeepetal. ... 705/14.41
8,688,583 B2 4/2014 Boccon-Gibod et al.
2002/0029337 Al 3/2002 Sudia et al.
2002/0073311 Al 6/2002 Futamura et al.
2004/0015689 Al 1/2004 Billhartz
2005/0005097 Al 1/2005 Murakawa
2008/0201575 Al 8/2008 van der Rijn
2011/0239270 Al 9/2011 Sovio et al.
2012/0221955 Al 8/2012 Raleigh et al.
(Continued)
OTHER PUBLICATIONS

Computer Desktop Encyclopedia definition of “processor”, found on
the world wide web at: http://lookup.computerlanguage.com/host__
app/search?cid=C999999&term=processor&lookup x=0&lookup.

y=0.

(Continued)

Primary Examiner — Kim Nguyen
(74) Attorney, Agent, or Firm — Paul S. Drake

&7

ABSTRACT

A method, system or computer usable program product for
managing attributes including utilizing a processor to gener-
ate a unique mutable identifier in response to a request from
an end entity; obtaining a selected set of attributes from the
end entity; associating and storing in memory the set of
attributes with the unique mutable identifier; and providing
the set of attributes associated with the mutable identifier to
any application in response to an inquiry utilizing the unique
mutable identifier from that application.

25 Claims, 8 Drawing Sheets

Software
Application
274

Facility
280

Software

Data o
Application
284

Data
256

Software
Application

———JApplication

== 244
Client
240

US 9,159,078 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

2013/0124435 Al*
2014/0013110 Al

5/2013 ESteS ..ovovvveiviriiiiirieieins 706/11
1/2014 Thoniel et al.

OTHER PUBLICATIONS

Garcia, Diego Zuquim Guimaraes; de Toledo, Maria Beatriz Felgar;
“A Web Service Architecture Providing QoS Management”, LA-Web
’06, Pub. Date: 2006, pp. 189-198, http://iceexplore.icee.org/stamp/
stamp.jsp? tp=&rnumber=4022109.

Hamada, Takeo, “Dynamic Role Creation from Roll Class Hierar-
chy—Security Management of Service Session in Dynamic Service
Environment”, TINA 97, Pub. Date: 1997, pp. 152-163, http://
ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=660720.
“X.509”, Wikipedia.com, Jan 9, 2012, found on the world wide web
at: http://web.archive.org/web/20120109190205/http://en.
wikipedia.org/wiki/X.509.

“XML”, Wikipedia.com, Mar. 5, 2012, found on the world wide web
at: http://web.archive.org/web120120305170157/https://en.
wikipedia.org/wiki/Xml.

“Cython”, Wikipedia.com, Dec 10, 2011, found on the world wide
web at: http://web.archive.org/web/20111210144342/http://en.
wikipedia.org/wiki/Cython.

* cited by examiner

US 9,159,078 B2

Sheet 1 of 8

Oct. 13, 2015

U.S. Patent

S30IA3Q
L CEINE
~ pLL
y
HILdVaV YHOMLIN mmoﬁwﬁz_ -
_
ozt f <72,
N
8LL
 ZE4 NN
WILSAS IHOVD DNISSIDOHd
3IOVHOLS <11
WvH
N~
ocL
rek AHOW3W
~ gzL
HIAYIS/NTLSAS HILNANOD

["Old

N~ ZE

AV1dSId

W

00;

rch

US 9,159,078 B2

Sheet 2 of 8

Oct. 13, 2015

U.S. Patent

orz
IVETS) 9g Fm.mo_
uonesyddy
P LA o | —
QQA» uoneolddy—— | “1%0]|_sremyos
2IBM) 0 e
/I%Wn_N O£z °brioig
1174
doide
=]
uoneolddy V17 %4 T 9zc
2Jem}jos MIOMISN \mﬁmh_
95z
eleq I
ree
D) Wﬂw uoneo|ddy
h%moN L 8J/eM)j0S
98c d
BleQ
i o7z . —
uoneoyddy
s 0Zz =~ 09C
2.BM)J0S EH 71 FH 1ea pedajoN =21 9uoyd
cs3l SIIQOW
08z | 744
Aoe4 uoreoyddy 992 774
alem)og eled uoieolddy
2/eM}j0g

¢ DA

U.S. Patent

360

Oct. 13,2015 Sheet 3 of 8
300
Device 3505
1
1
End Entity 370| | Attributes Service
: Provider (ASP)
== ||
ID | Attributes : ID Database
] ;16 : 334
1
314 | 330
¥ 1
1
' Software
/ ! v
Application | Software| Service Provider
Module !
N322| !
ID Cache - ID Cache
1
324 | 344
320 | 340
1
1
1
l

US 9,159,078 B2

U.S. Patent Oct. 13, 2015 Sheet 4 of 8 US 9,159,078 B2

FIG. 4

400

End Entity Request
Identifier

| 405
Receive Request and
Generate Identifier

i /410
Store Identifier in
ASP Memory

Send ldentifier to
End Entity

Store Identifier in
End Entity Memory

y 425
Display Attribute
Choices

] 430
Receive Attribute
(and Store) Selections

| /435
Send Attribute
Selections to ASP

] 440
Store Attribute
Selections in ASP

U.S. Patent Oct. 13, 2015 Sheet 5 of 8 US 9,159,078 B2

500
Identifier 210
/‘
Identifier Attributes 530

532—-Date Created:

534 —-Expiration Date:

536 - Record Size:
®

Linkages 540

542—Prior Expired ID:
544—Related ID:

520< ’

550
General Attributes
552—Location Tracking? Override?
554—Direct Advertising? Override?
.
e
Application Specific Attributes 560
Application(s): -562
Creation Date: —564
Last Updated: -~ 566
Preferences: -568
.
° 561
[]
®
]

U.S. Patent

Oct. 13,2015 Sheet 6 of 8 US 9,159,078 B2
600
Application Initiated |~
!
Obtain Identifier/ | 605
Attributes from
End Entity
610
Y Attributes
Included
Attributes Y
in Cache
Transmit Identifier }20
to ASP
!
. 625
Look Up Identifier |~
630
Obtain Attributes |~
Transmit Attributes | 635
to Application -
="
Store Attributes | 640
in Cache -
la
r
Proceed with 645
/

Attributes

U.S. Patent Oct. 13, 2015 Sheet 7 of 8 US 9,159,078 B2

FIG. 7

700

Log into ASP

705

ASP Generates and
Transmits Token

Y (710
Token Passed to
End Entity

Y 715
Token Passed to
Application

Y 720

Application Contacts ASP
with Token

Y 725

Unique ID Obtained
from |ID Database

730

Application/End Entity
Correlated with ID

Y 735
Unique ID Stored
in Local Memory

Y 740

User Queried
re preferences

U.S. Patent

Oct. 13, 2015

Sheet 8 of 8

FIG. 8

800
Log into ASP

US 9,159,078 B2

810\ y

Modify Login ID
or Unique ID

Modify
Preferences

| 815

Y 820
Modify
Linkages

et

y

ID Database

Y 830
Log Off ASP

825

Store Changes in| _~

US 9,159,078 B2

1
MANAGING IDENTIFIERS

This application is copending with concurrently filed
application Ser. No. 13/839,614 of Kenneth K. Okumura,
filed on Mar. 15, 2013, entitled “MANAGING IDENTIFI-
ERS”, the disclosure of which is incorporated in its entirety
herein by reference.

BACKGROUND

1. Technical Field

The present invention relates generally to managing iden-
tifiers, and in particular, to a computer implemented method
for allowing the creation of a unique mutable identifier by a
service provider and managing the attributes associated with
that identifier.

2. Description of Related Art

Identity management includes managing identifiers of
individuals. This includes the authentication, authorization
and privileges of these identifiers across system, infrastruc-
ture, and/or enterprise domains. This is performed with the
intent of providing security and increasing productivity.

Device identification includes assigning a unique identifi-
cation to a device. This is also performed with the intent of
providing security and increasing productivity, but for a
device instead of an individual. One of the issues with using
device identifiers is that they are immutable and many times
they are associated with an individual. As a result, the device
identifiers end up being an extension of an identity thus com-
bining the two different domains.

Mobile devices such as smart phones, pad and pen-based
computers are often linked to an individual with personally
identifiable information (PII). PII may be obtained by a ser-
vice or product provider of those devices during a registration
and/or subscription process. The PII may be required for the
purpose of providing service to the individual using the
device.

Device identifiers are often used for purposes other than
their original intention. One use of the device identifier is in
digital advertising. The mobile advertising industry has relied
heavily on device identifiers as a means to identify an indi-
vidual on a device and across applications for the sole purpose
of'providing targeted advertising and measuring the effective-
ness of that advertising. Because only certain information
(behaviorally based) can be attributed to an individual, many
times a mobile advertiser will attempt to bind identifying
information obtained on a device with other offline informa-
tion in order to form a complete profile of that individual.
They don’t have direct access to PII provided upon registra-
tion of the device itself; so they do it by other means and bind
that information to the device identifier.

Such an approach has inherent disadvantages to an indi-
vidual but is very advantageous to the advertisers. First of all,
for those individuals who feel strongly about their privacy,
there is no means for them to control use of their personal
information. This has led to some device providers removing
access to the device identifier from the device operating sys-
tem. Advertisers may use alternative end-user identifiers on
other operating systems or platforms, but this also raises
concerns of privacy advocates.

With the myriad of mobile applications and the security
and privacy related issues associated with those applications,
there has been a focus on the various schemes that are used by
these applications to associate device identifiers with an end
user. There are many different techniques that mobile appli-
cation developers use to identify end users of a mobile device.

10

15

20

25

30

35

40

45

50

55

60

65

2

Most solutions today use a unique characteristic of the
device itself. Whether it’s UDID (unique device identifier),
MAC (media access control) address, IMEI (international
mobile equipment identity), device fingerprint or some other
method, these particular modes of identification are also easy
to track across applications and time and may be correlated
back to the device and the user.

SUMMARY

The illustrative embodiments provide a method, system,
and computer usable program product for managing
attributes including utilizing a processor to generate a unique
mutable identifier in response to a request from an end entity;
obtaining a selected set of attributes from the end entity;
associating and storing in memory the set of attributes with
the unique mutable identifier; and providing the set of
attributes associated with the mutable identifier to any appli-
cation in response to an inquiry utilizing the unique mutable
identifier from that application.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

The novel features believed characteristic of the invention
are set forth in the appended claims. The invention itself,
further objectives and advantages thereof, as well as a pre-
ferred mode of use, will best be understood by reference to the
following detailed description of illustrative embodiments
when read in conjunction with the accompanying drawings,
wherein:

FIG. 1 is a block diagram of a data processing system in
which various embodiments may be implemented;

FIG. 2 is a block diagram of a network of data processing
systems in which various embodiments may be implemented;

FIG. 3 is a block diagram of a system utilizing a unique
identifier in which various embodiments may be imple-
mented;

FIG. 41is a flow diagram of creating an identifier and related
attributes in which various embodiments may be imple-
mented;

FIG. 5 is a block diagram of an identifier and its related
attributes in which various embodiments may be imple-
mented;

FIG. 6 is a flow diagram of an application obtaining
attributes related to an end entity identifier in which various
embodiments may be implemented;

FIG. 7 is a flow diagram of correlating a second end entity
to a single identifier in which various embodiments may be
implemented; and

FIG. 8 is a flow diagram of an end entity managing the
unique ID with the application service provider.

DETAILED DESCRIPTION

Processes and devices may be implemented and utilized to
manage unique identifiers. A service provider provides,
maintains, and otherwise manages a copy of each identifier.
Each identifier is associated with a set of attributes including
preferences such as privacy preferences. These attributes are
selected by an end entity and may or may not be associated
with a specific device or individual. These processes and
apparatuses may be implemented and utilized as will be
explained with reference to the various embodiments below.

FIG. 1 is a block diagram of a data processing system in
which various embodiments may be implemented. Data pro-
cessing system 100 is one example of a suitable data process-

US 9,159,078 B2

3

ing system and is not intended to suggest any limitation as to
the scope of use or functionality of embodiments of the inven-
tion described herein. Regardless, data processing system
100 is capable of being implemented and/or performing any
of the functionality set forth herein.

In data processing system 100 there is a computer system/
server 112, which is operational with numerous other general
purpose or special purpose computing system environments,
peripherals, or configurations. Examples of well-known com-
puting systems, environments, and/or configurations that
may be suitable for use with computer system/server 112
include, but are not limited to, personal computer systems,
server computer systems, thin clients, thick clients, hand-held
or laptop devices, multiprocessor systems, microprocessor-
based systems, set top boxes, programmable consumer elec-
tronics, network PCs, minicomputer systems, mainframe
computer systems, and distributed cloud computing environ-
ments that include any of the above systems or devices, and
the like.

Computer system/server 112 may be described in the gen-
eral context of computer system-executable instructions,
such as program modules, being executed by a computer
system. Generally, program modules may include routines,
programs, objects, components, logic, data structures, and so
on that perform particular tasks or implement particular
abstract data types. Computer system/server 112 may be
practiced in distributed computing environments where tasks
are performed by remote processing devices that are linked
through a communications network. In a distributed comput-
ing environment, program modules may be located in both
local and remote computer system storage media including
memory storage devices.

As shown in FIG. 1, computer system/server 112 in data
processing system 100 is shown in the form of a general-
purpose computing device. The components of computer sys-
ten/server 112 may include, but are not limited to, one or
more processors or processing units 116, a system memory
128, and a bus 118 that couples various system components
including system memory 128 to processor 116.

Bus 118 represents one or more of any of several types of
bus structures, including a memory bus or memory controller,
aperipheral bus, an accelerated graphics port, and a processor
orlocal bus using any of a variety of bus architectures. By way
of example, and not limitation, such architectures include
Industry Standard Architecture (ISA) bus, Micro Channel
Architecture (MCA) bus, Enhanced ISA (EISA) bus, Video
Electronics Standards Association (VESA) local bus, and
Peripheral Component Interconnects (PCI) bus.

Computer system/server 112 typically includes a variety of
computer system readable media. Such media may be any
available media that is accessible by computer system/server
112, and it includes both volatile and non-volatile media,
removable and non-removable media.

System memory 128 can include computer system read-
able media in the form of volatile memory, such as random
access memory (RAM) 130 and/or cache memory 132. Com-
puter system/server 112 may further include other removable/
non-removable, volatile/non-volatile computer system stor-
age media. By way of example, storage system 134 can be
provided for reading from and writing to a non-removable,
non-volatile magnetic media (not shown and typically called
a “hard drive”). Although not shown, a USB interface for
reading from and writing to a removable, non-volatile mag-
netic chip (e.g., a “flash drive™), and an optical disk drive for
reading from or writing to a removable, non-volatile optical
disk such as a CD-ROM, DVD-ROM or other optical media
can be provided. In such instances, each can be connected to

10

15

20

25

30

35

40

45

50

55

60

65

4

bus 118 by one or more data media interfaces. Memory 128
may include at least one program product having a set (e.g., at
least one) of program modules that are configured to carry out
the functions of embodiments of the invention. Memory 128
may also include data that will be processed by a program
product.

Program/utility 140, having a set (at least one) of program
modules 142, may be stored in memory 128 by way of
example, and not limitation, as well as an operating system,
one or more application programs, other program modules,
and program data. Each of the operating system, one or more
application programs, other program modules, and program
data or some combination thereof, may include an implemen-
tation of a networking environment. Program modules 142
generally carry out the functions and/or methodologies of
embodiments of the invention. For example, a program mod-
ule may be software for generating and/or utilizing identifiers
used in identifying and implementing an end user’s prefer-
ences or other identifier attributes.

Computer system/server 112 may also communicate with
one or more external devices 114 such as a keyboard, a
pointing device, a display 124, etc.; one or more devices that
enable a user to interact with computer system/server 112;
and/or any devices (e.g., network card, modem, etc.) that
enable computer system/server 112 to communicate with one
or more other computing devices. Such communication can
occur via [/O interfaces 122 through wired connections or
wireless connections. Still yet, computer system/server 112
can communicate with one or more networks such as a local
area network (LAN), a general wide area network (WAN),
and/or a public network (e.g., the Internet) via network
adapter 120. As depicted, network adapter 120 communicates
with the other components of computer system/server 112 via
bus 118. It should be understood that although not shown,
other hardware and/or software components could be used in
conjunction with computer system/server 112. Examples,
include, but are not limited to: microcode, device drivers, tape
drives, RAID systems, redundant processing units, data
archival storage systems, external disk drive arrays, etc.

FIG. 2 is a block diagram of a network of data processing
systems in which various embodiments may be implemented.
Data processing environment 200 is a network of data pro-
cessing systems such as described above with reference to
FIG. 1 and other types of end entities. Software applications
may execute on any computer or other type of data processing
system in data processing environment 200. Data processing
environment 200 includes network 210. Network 210 is the
medium used to provide simplex, half duplex and/or full
duplex communications links between various devices and
computers connected together within data processing envi-
ronment 200. Network 210 may include connections such as
wire, wireless communication links, or fiber optic cables.

Server 220 and client 240 are coupled to network 210 along
with storage unit 230. In addition, laptop 250 and facility 280
(such as a home or business) are coupled to network 210
including wirelessly such as through a network router 253. A
mobile phone 260 and notepad 270 may be coupled to net-
work 210 through a mobile phone tower 262 or through a
wireless router 253 such as with a Wi-Fi connection. Data
processing systems, such as server 220, client 240, laptop
250, mobile phone 260, notepad 270 and facility 280 contain
data and have software applications including software tools
executing thereon. Other types of data processing systems
such as personal digital assistants (PDAs), smartphones, tab-
lets and netbooks may be coupled to network 210.

Server 220 may include software application 224 and data
226 for generating and/or utilizing identifiers used in identi-

US 9,159,078 B2

5

fying and implementing an end user’s preferences or other
identifier attributes, or other software applications and data in
accordance with embodiments described herein. Storage 230
may contain software application 234 and a content source
such as data 236 for generating and/or utilizing identifiers
used in identifying and implementing an end user’s prefer-
ences or other identifier attributes. Other software and content
may be stored on storage 230 for sharing among various
computer or other data processing devices. Client 240 may
include software application 244 and data 246. Laptop 250,
mobile phone 260 and notepad 270 may also include software
applications 254, 264 and 274 as well as data 256, 266 and
276. Facility 280 may include software applications 284 and
data 286. Other types of data processing systems coupled to
network 210 may also include software applications. Soft-
ware applications could include a web browser, email, or
other software application that can generate and/or utilize
identifiers used in identifying and implementing an end user’s
preferences or other identifier attributes.

Server 220, storage unit 230, client 240, laptop 250, mobile
phone 260, notepad 270, facility 280 and other data process-
ing devices may couple to network 210 using wired connec-
tions, wireless communication protocols, or other suitable
data connectivity. Client 240 may be, for example, a personal
computer or a network computer.

In the depicted example, server 220 may provide data, such
as boot files, operating system images, and applications to
client 240 and laptop 250. Server 220 may be a single com-
puter system or a set of multiple computer systems working
together to provide services in a client server environment.
Client 240 and laptop 250 may be clients to server 220 in this
example. Client 240, laptop 250, mobile phone 260, notepad
270 and facility 280 or some combination thereof, may
include their own data, boot files, operating system images,
and applications. Data processing environment 200 may
include additional servers, clients, and other devices that are
not shown.

In the depicted example, data processing environment 200
may be the Internet. Network 210 may represent a collection
of networks and gateways that use the Transmission Control
Protocol/Internet Protocol (TCP/IP) and other protocols to
communicate with one another. At the heart of the Internet is
a backbone of data communication links between major
nodes or host computers, including thousands of commercial,
governmental, educational, and other computer systems that
route data and messages. Of course, data processing environ-
ment 200 also may be implemented as a number of different
types of networks, such as for example, an intranet, a local
area network (LAN), or a wide area network (WAN). FIG. 2
is intended as an example, and not as an architectural limita-
tion for the different illustrative embodiments.

Among other uses, data processing environment 200 may
be used for implementing a client server environment in
which the embodiments may be implemented. A client server
environment enables software applications and data to be
distributed across a network such that an application func-
tions by using the interactivity between a client data process-
ing system and a server data processing system. Data process-
ing environment 200 may also employ a service oriented
architecture where interoperable software components dis-
tributed across a network may be packaged together as coher-
ent business applications.

FIG. 3 isablock diagram of a system 300 utilizing a unique
identifier in which various embodiments may be imple-
mented. System 300 includes an end entity 310, an applica-
tion 320, an attributes service provider 330, and a service
provider 340.

10

15

20

25

30

35

40

45

50

55

60

65

6

End entity 310 may be a data processing system such as a
device (e.g. mobile phone, notepad, desktop computer, etc.)
running software such as an operating system and applica-
tions. These applications may include a spreadsheet, a docu-
ment handler, a picture, an internet browser, etc.

End entity 310 includes at least one identifier 314 that is
unique and mutable. Multiple identifiers may be utilized for a
variety of reasons, such as when multiple users may utilize the
same device, or when a user wishes to utilize different sets of
corresponding attributes at different times or purposes. End
entity 310 may optionally include at least one set of preferred
attributes 316, each set of attributes corresponding to one
identifier.

Application 320 is a set of software performing tasks or
other services for the end entity. Application 320 and end
entity 310 may reside on the same device 350 or different
devices. If on different devices, application 320 may commu-
nicate with multiple end entities, each end entity having dif-
ferent identifiers and attributes. Application 320 can be an
application downloaded onto a data processing system such
as mobile phone or other mobile device end entity, a web page
located on a remote server accessed across the internet by a
user such as through a notepad end entity, virtual machine
software performing tasks such as for a desktop end entity, or
other software application performing tasks for an end entity,
either internally or across a network. Application 320 may
work with other applications running on end entity 310.

Application 320 can include a software module 322 for
handling end entity identifiers and their related attributes.
Software module 322 may be added to an application by using
a software development kit (SDK) specific for that purpose.
Such an SDK would allow for consistent and standard han-
dling of end entity identifiers and their associated attributes
by any application implementing that SDK. Application 320
can optionally maintain an ID cache (database) 324, particu-
larly if application 320 resides on a separate device from end
entity 310. This ID cache includes one or more IDs of the end
entity and optionally the sets of attributes corresponding to
those IDs.

Attribute service provider (ASP) 330 is a service provider
that manages identifiers and their associated attributes on
behalf of end entities. This includes generating unique
mutable identifiers upon request, storing those identifiers
with end entity preferences and other attributes, managing the
distribution of the identifier attributes with applications and
service providers, and policing the proper utilization of the
identifiers and their attributes. ASP 330 includes an ID data-
base 334 including a copy of the end entity identifiers as well
as related attributes for those identifiers.

Service provider 340 utilizes information provided by
application 320 for providing tasks or other services supple-
menting or supporting services provided by application 320
for end entity 310. Service provider 340 may be a mapping
service, advertiser, clearing house, or other provider of ser-
vices. Service provider 340 may be the same set of software
360 as application 320. Service provider 340 can optionally
maintain an ID cache (database) 344 including identifiers and
possibly their corresponding attributes.

End entity 310 contains at least one identifier (ID) 314 and
optionally may include attributes 316, which may be created
in communication with ASP 330 as described below with
reference to FIG. 4. Multiple identifiers may be utilized by a
single end entity for a variety of reasons, such as when mul-
tiple users may utilize the same device, or when a user wishes
to utilize different sets of corresponding attributes at different
times or purposes. This identifier and corresponding
attributes may be stored in end entity memory including a

US 9,159,078 B2

7

device memory, within a cookie in browser memory, and/or or
otherwise accessible by the end entity 310 and application
320. This identifier is also stored in an ID database 334 in ASP
330 memory along with certain identifier attributes associ-
ated with that ID. ASP may contain many such IDs for mul-
tiple end entities. ID database 334 is accessible by software
module 322 and service provider 340 given certain conditions
as described below.

This identifier is unique, mutable, and is associated with
certain attributes. These attributes may include information
about the identifier itself such as expiration date of the iden-
tifier, last date the attributes were updated, general prefer-
ences of an end entity user such as privacy preferences, spe-
cific preferences of an end entity with regards to a specific
application, links to other identifiers, or other attributes
including any combination of the foregoing. This identifier
may or may not be associated with one or more individuals,
software applications, devices, or any combination thereof.

Application 320 may include a software module 322 for
interacting with ASP 330. Software module 322 can obtain ID
314 from end entity 310, contact ASP 330 using ID 314 to
obtain attributes from ID cache 334, and then may enforce the
preferences within those attributes. For example, if service
provider 340 requests certain information from application
320 not permitted by the attributes in ID database 334 (a copy
of which may be stored in ID cache 324 or end entity 310),
then software module 322 can prevent that information from
being provided to service provider 340. Service provider 340
may also obtain identifier 314 through application 320, and
then obtain attributes from software module 322, directly
from ASP 330, or elsewhere such as end entity 310, for
storage and use in ID cache 344. Service provider can then
provide services for end entity 310 in accordance with those
attributes. The actions of service provider software module
322 are explained in greater detail below with reference to
FIG. 6.

FIG. 4 is a flow diagram of creating an identifier and related
attributes in which various embodiments may be imple-
mented. In a first step 400, a request for an identifier is sent
from the end entity to the attributes service provider (ASP).
This may be in response to the installation or running of an
application which may utilize preferences. Alternatively, the
application may request the identifier on behalf of the end
entity, particularly ifthe application needs certain preferences
or other attributes from the end entity user. A login identifier
may be provided by the end entity for use in future mainte-
nance with the forthcoming unique ID. The login identifier
may be as simple as an email address or it may be a public key
or token digitally signed using a private key known to the end
entity. Alternatively the login identifier may be provided by
the ASP.

In step 405, the ASP receives the request and generates a
unique identifier (ID) in response to the request. This identi-
fier is unique to any other identifier within or accessible by the
ASP. This unique identifier may be generated sequentially
higher than a previously generated 1D, generated by hashing
a sequentially generated 1D, generated randomly and then
compared to all other IDs to verify uniqueness, or generated
utilizing other types of known techniques. Once generated,
the unique ID is then stored in ASP memory in an ID database
in step 410. Subsequently the ID is then passed back to the end
entity in step 415. The ASP may also pass certain general
attribute selections back to the end entity. This can include
general preferences such as whether a user of the end entity
allows location tracking, directed advertising, etc.

The end entity then stores the identifier in memory in step
420. The end entity may store the identifier for global access

10

15

20

25

30

35

40

45

50

55

60

65

8

by any application or for limited access by only the applica-
tion which prompted the request for an identifier. The end
entity may also store the identifier in a web-based cookiein a
browser data storage location or HTMLS local storage for
potential access by website(s) during web browsing as
needed, often at user selection. This allows a bridging mecha-
nism between the mobile operating system application space
and the browser cache. Subsequently in step 425, the end
entity then displays attribute choices for user selection. This
can include general preferences requested by the ASP or
preferences specific to the application that prompted the
request for an identifier. These preferences can include pri-
vacy preference selections related to location tracking, infor-
mation sharing (such as health or financial information), or
other preference selections. Upon user selection, the attribute
selections are received by the end entity in step 430. These
attribute selections or applicable portions of those selections
may be stored with the identifier in end entity memory and/or
in a web-based cookie. As with the identifier, these attributes
may be stored for global access or for limited access. The
attributes may also be stored only temporarily to avoid pos-
sibly synchronization issues with the same attributes stored in
the ASP. These attribute selections are then passed back to the
ASP in step 435. The ASP then associates and stores the
attribute selections with the identifier in ASP memory in step
440.

FIG. 5 is a block diagram of an identifier and its related
attributes 500 in which various embodiments may be imple-
mented. As described above, an attribute service provider
may manage many identifiers and their related attributes.
Identifier (ID) section 510 includes a copy of the unique ID
512 which may be in one a variety of forms. ID 510 may be of
a specific form so that it may be clearly identified as an
identifier for a set of attributes such as preferences and pri-
vacy preferences.

Attributes 520 includes several sections such as identifier
attributes 530, linkages 540, general attributes 550, and appli-
cation specific attributes 560. Identifier attributes include
attributes regarding the identifier such as when it was created
532, expiration date 534, size of this record of attributes 536,
etc. These attributes may be used to assist in managing the
identifier and related attributes. For example, when an iden-
tifier expires, it may be renewed or a new identifier created
which links to the expired identifier, thereby preserving
related attributes. Linkages 540 can include linkages to prior
expired identifiers and their attributes 542, to other identifiers
that may be utilized by the same user across multiple end
entities 544, etc. The end entity login identifier may also be
stored with the identifier attributes or it may be separately
stored in a more secure location with the unique identifier as
an index. The end entity login identifier is not shared with
other end entities or applications by the ASP.

General attributes 550 can include general selections by an
end entity (i.e. by a user of that end entity) that may be used
across multiple applications unless overridden by attributes
specific to an application. This set of general attributes may be
generated by the attribute service provider or may be a stan-
dard set of attributes generally accepted by many applica-
tions. For example, a user may have selected no to location
tracking 552, thereby instructing all applications to not track
the location of any end entity providing the related identifier.
This selection can includes a selection whether that general
preference may be overridden by a specific attribute for a
particular application as described below in specific attributes
560. Another example may be a general selection of no direct
advertising 554. Again, this may be overridden by application
specific attributes 560 for a particular application if allowed.

US 9,159,078 B2

9

Application specific attributes 560 includes sets of
attributes for specific applications or application families
(e.g. multiple versions of the same application running on
different end entities). These application specific attributes
are selected by an end entity for an application and may
override any general preferences if allowed by the general
preferences. For example, a first set of application specific
attributes 561 includes an identification of the application(s)
562, creation date of the attributes 564, last update to the
attributes 566, and preferences 568. These preferences can
include privacy preferences related to advertising, tracking,
sharing of user information, etc. Such preferences can be
stored on a mobile device in memory or in an ASP database
indexed by identifier such as described below.

FIG. 6 is a flow diagram of an application obtaining
attributes related to an end entity identifier in which various
embodiments may be implemented. In afirst step 600, the end
entity initiates an application. In the case of an application
stored internally, this may be performed by a simple call. In
the case of an internet browser, this may be performed by
using a browser to open a URL (uniform resource locator) of
a website. Then in step 605, the application obtains the end
entity identifier and any associated attributes that may be
stored in the end entity for determining any preferences or
other attributes for that end entity. This can involve sending an
inquiry to the end entity memory or to the browser memory.
Once the identifier is obtained, the application determines in
step 610 whether the associated attributes were included with
the identifier. If yes, then processing continues to step 640
below, otherwise, processing continues to step 615. In step
615, the application determines whether it already has the
attributes in an identifier cache. If yes, the processing contin-
ues to step 645 below, otherwise processing continues to step
620. In step 620, the application can pass the identifier to the
attribute service provider (ASP) with a request for the asso-
ciated attributes.

The ASP then takes the identifier and looks up that identi-
fier in ASP memory in step 625. The ASP then obtains the
associated attributes also in memory in step 630. The associ-
ated attributes are then sent to the requesting application in
step 635. If the application also provided identifying infor-
mation about the application, then the ASP may only send the
general attributes and the specific attributes for that applica-
tion. In step 640, the application then stores the attributes in
any application identifier cache is one is available. Subse-
quently, in step 645, the application proceeds according to the
attributes for that end entity. That is, the application enforces
the attributes

FIG. 7 is a flow diagram of a second end entity obtaining
correlation to an identifier in which various embodiments
may be implemented. This process may be performed after a
first end entity creates a unique identifier as described above
with reference to FIG. 4. This process may be performed by
the end entity that initially created the identifier or with a
second end entity with the appropriate authority. This process
may be performed by one or more end entities that have
preregistered with the attribute service provider.

Ina first step 700 an end entity logs into the attribute service
provider with a login identifier and unique ID, the login
identifier being previously associated with the unique ID in
FIG. 4. The end entity logging in may be the first end entity
that generated the login identifier and obtained the unique 1D,
or it may be a second entity that received the unique ID and
corresponding login identifier from the first end entity. In a
second step 705, the attribute service provider generates a
binding token. This is a token that may be signed by a private
key of the ASP or other type of token. The token is time

10

15

20

25

30

35

40

45

50

55

60

65

10

stamped and has a limited lifetime to avoid the misuse of that
token. The lifetime is predesignated and may be set by the
logged in end entity or preset by the ASP. The ASP then
correlates the token with the unique ID and transmits the
token to the logged in end entity in step 710.

Subsequently in step 715, the end entity that logged in
passes the token to the second end entity unless the second
end entity is the entity that logged in, which then passes the
token to a web browser, web page, or other application. Then
in step 720, the application contacts the ASP with the binding
token. Then in step 725, the ASP then obtains the correspond-
ing unique ID from the ID database. If the token is within a
predesignated time period, the ASP then recognizes the appli-
cation and its end entity as correlated to the token in step 730.
Alternatively, a derivative unique ID may be stored in
memory for the application and its end entity. The application
then stores that unique ID in local memory (end entity
memory, web browser cache, application cache, etc.) in step
735. Subsequently in step 740, the user may be queried to
establish preferences for that application which can be stored
with the unique ID in the ASP as well as with the unique ID in
local memory

FIG. 8 is a flow diagram of an end entity managing the
unique ID with the application service provider. In a first step
800, the end entity or application logs into the ASP using the
login identifier with the unique ID. The end entity or appli-
cation has several options at this point in step 805. The end
entity may modify the unique identifier or login identifier
810, modify the preferences shown in the attributes 815,
manage linkages with other identifiers also using the same
login ID 820, etc. Once completed, then in step 825 the
changes are reflected in the ASP ID database and in the end
entity local memory, before logging off in step 830.

As a result of the mutability of the unique 1D, third parties
cannot reliably correlate a unique 1D to a specific end entity or
user, yet due to the flexibility of the unique identifier, the
preferences and attributes can be stored and utilized for the
protection and utilization of one or more users, end entities
and applications.

The invention can take the form of an entirely software
embodiment, or an embodiment containing both hardware
and software elements. In a preferred embodiment, the inven-
tion is implemented in software or program code, which
includes but is not limited to firmware, resident software, and
microcode.

As will be appreciated by one skilled in the art, aspects of
the present invention may be embodied as a system, method
or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi-
ment combining software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module” or
“system.” Furthermore, aspects of the present invention may
take the form of a computer program product embodied in one
ormore computer readable medium(s) having computer read-
able program code embodied thereon.

Any combination of one or more computer readable medi-
um(s) may be utilized. The computer readable medium may
be a computer readable signal medium or a computer read-
able storage medium. A computer readable storage medium
may be, for example, but not limited to, an electronic, mag-
netic, optical, electromagnetic, infrared, or semiconductor
system, apparatus, or device, or any suitable combination of
the foregoing. More specific examples (a non-exhaustive list)
of the computer readable storage medium would include the
following: an electrical connection having one or more wires,

US 9,159,078 B2

11

a portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM), or Flash
memory, an optical fiber, a portable compact disc read-only
memory (CD-ROM), an optical storage device, a magnetic
storage device, or any suitable combination of the foregoing.
In the context of this document, a computer readable storage
medium may be any tangible medium that can contain, or
store a program for use by or in connection with an instruction
execution system, apparatus, or device.

A computer readable signal medium may include a propa-
gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag-
netic, optical, or any suitable combination thereof. A com-
puter readable signal medium may be any computer readable
medium that is not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or in connection with an instruction execution system,
apparatus, or device.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, including
but not limited to wireless, wireline, optical fiber cable, RF,
etc., or any suitable combination of the foregoing. Further, a
computer storage medium may contain or store a computer-
readable program code such that when the computer-readable
program code is executed on a computer, the execution of this
computer-readable program code causes the computer to
transmit another computer-readable program code over a
communications link. This communications link may use a
medium that is, for example without limitation, physical or
wireless.

A data processing system suitable for storing and/or
executing program code will include at least one processor
coupled directly or indirectly to memory elements through a
system bus. The memory elements can include local memory
employed during actual execution of the program code, bulk
storage media, and cache memories, which provide tempo-
rary storage of at least some program code in order to reduce
the number of times code must be retrieved from bulk storage
media during execution.

A data processing system may act as a server data process-
ing system or a client data processing system. Server and
client data processing systems may include data storage
media that are computer usable, such as being computer
readable. A data storage medium associated with a server data
processing system may contain computer usable code such as
for generating and/or utilizing identifiers used in identifying
and implementing an end user’s preferences or utilizing other
user information. A client data processing system may down-
load that computer usable code, such as for storing on a data
storage medium associated with the client data processing
system, or for using in the client data processing system. The
server data processing system may similarly upload computer
usable code from the client data processing system such as a
content source. The computer usable code resulting from a
computer usable program product embodiment of the illus-
trative embodiments may be uploaded or downloaded using
server and client data processing systems in this manner.

Input/output or /O devices (including but not limited to
keyboards, displays, pointing devices, etc.) can be coupled to
the system either directly or through intervening I/O control-
lers.

Network adapters may also be coupled to the system to
enable the data processing system to become coupled to other
data processing systems or remote printers or storage devices

10

15

20

25

30

40

45

55

65

12

through intervening private or public networks. Modems,
cable modem and Ethernet cards are just a few of the currently
available types of network adapters.

The description ofthe present invention has been presented
for purposes of illustration and description, and is not
intended to be exhaustive or limited to the invention in the
form disclosed. Many modifications and variations will be
apparent to those of ordinary skill in the art. The embodiment
was chosen and described in order to explain the principles of
the invention, the practical application, and to enable others
of ordinary skill in the art to understand the invention for
various embodiments with various modifications as are suited
to the particular use contemplated.

The terminology used herein is for the purpose of describ-
ing particular embodiments and is not intended to be limiting
of'the invention. As used herein, the singular forms “a”, “an”
and “the” are intended to include the plural forms as well,
unless the context clearly indicates otherwise. It will be fur-
ther understood that the terms “comprises” and/or “compris-
ing,” when used in this specification, specify the presence of
stated features, integers, steps, operations, elements, and/or
components, but do not preclude the presence or addition of
one or more other features, integers, steps, operations, ele-
ments, components, and/or groups thereof.

The corresponding structures, materials, acts, and equiva-
lents of all means or step plus function elements in the claims
below are intended to include any structure, material, or act
for performing the function in combination with other
claimed elements as specifically claimed. The description of
the present invention has been presented for purposes of
illustration and description, but is not intended to be exhaus-
tive or limited to the invention in the form disclosed. Many
modifications and variations will be apparent to those of
ordinary skill in the art without departing from the scope and
spirit of the invention. The embodiment was chosen and
described in order to best explain the principles of the inven-
tion and the practical application, and to enable others of
ordinary skill in the art to understand the invention for various
embodiments with various modifications as are suited to the
particular use contemplated.

What is claimed is:
1. A method of managing user preferences comprising:
utilizing a processor to generate a unique mutable identifier
in response to a request from an end entity;
obtaining a set of user preferences from the end entity;
associating and storing in memory the set of user prefer-
ences with the unique mutable identifier;
providing the unique mutable identifier to the end entity;
and
providing the set of user preferences associated with the
mutable identifier to any application for enforcement by
that application in response to an inquiry utilizing the
unique mutable identifier from that application;
wherein a unique login identifier corresponds to the unique
mutable identifier; and
wherein the unique mutable identifier may be modified in
response to a request received with the unique login
identifier, the modified unique mutable identifier being
associated with the set of user preferences.
2. The method of claim 1 wherein the set of user prefer-
ences are a set of user privacy preferences.
3. The method of claim 1 wherein the set of user prefer-
ences are a set of user security preferences.
4. The method of claim 1 further comprising obtaining
credentials of the set of user preferences associated with the
unique mutable identifier;

US 9,159,078 B2

13

wherein the credentials are provided with the set of user
preferences to any application in response to an inquiry
utilizing the unique mutable identifier from that appli-
cation.

5. The method of claim 1 wherein multiple unique mutable
identifiers may be associated with the set of user preferences.

6. The method of claim 5 wherein a first unique login
identifier may correspond to a first unique mutable identifier
which is associated with a first set of user preferences, a
second unique login identifier may correspond to a second
unique mutable identifier also associated with the first set of
user preferences.

7. The method of claim 1 wherein the set of user prefer-
ences may be modified in response to a request received with
the unique login identifier, the modified set of user prefer-
ences being associated with the unique mutable identifier and
stored in memory.

8. The method of claim 7 wherein the modified set of user
preferences associated with the unique mutable identifier is
provided to any application for enforcement by that applica-
tion in response to an inquiry utilizing the unique mutable
identifier from that application.

9. The method of claim 8 wherein the unique mutable
identifier may be modified in response to a request received
with the unique login identifier, the modified unique mutable
identifier being associated with the set of user preferences;

wherein a first unique login identifier may correspond to a

first unique mutable identifier which is associated with a
first set of user preferences, a second unique login iden-
tifier may correspond to a second unique mutable iden-
tifier also associated with the first set of user prefer-
ences; and wherein the set of user preferences is selected
from a group consisting of a set of user privacy prefer-
ences and a set of user security preferences.

10. A computer usable program product comprising a com-
puter usable storage medium including computer usable code
for use in managing user preferences, the computer usable
program product comprising code for performing the steps
of:

utilizing a processor to generate a unique mutable identifier

in response to a request from an end entity;

obtaining a set of user preferences from the end entity;

associating and storing in memory the set of user prefer-

ences with the unique mutable identifier;

providing the unique mutable identifier to the end entity;

and
providing the set of user preferences associated with the
mutable identifier to any application for enforcement by
that application in response to an inquiry utilizing the
unique mutable identifier from that application;

wherein a unique login identifier corresponds to the unique
mutable identifier; and

wherein the unique mutable identifier may be modified in

response to a request received with the unique login
identifier, the modified unique mutable identifier being
associated with the set of user preferences.

11. The computer usable program product of claim 10
wherein the set of user preferences are a set of user privacy
preferences.

12. The computer usable program product of claim 10
wherein the set of user preferences are a set of user security
preferences.

13. The computer usable program product of claim 10
further comprising obtaining credentials of the set of user
preferences associated with the unique mutable identifier;

5

10

15

20

25

30

35

40

45

50

55

60

65

14

wherein the credentials are provided with the set of user
preferences to any application in response to an inquiry
utilizing the unique mutable identifier from that appli-
cation.

14. The computer usable program product of claim 10
wherein multiple unique mutable identifiers may be associ-
ated with the set of user preferences.

15. The computer usable program product of claim 14
wherein a first unique login identifier may correspond to a
first unique mutable identifier which is associated with a first
set of user preferences, a second unique login identifier may
correspond to a second unique mutable identifier also asso-
ciated with the first set of user preferences.

16. The computer usable program product of claim 10
wherein the set of user preferences may be modified in
response to a request received with the unique login identifier,
the modified set of user preferences being associated with the
unique mutable identifier and stored in memory.

17. The computer usable program product of claim 16
wherein the modified set of user preferences associated with
the unique mutable identifier is provided to any application
for enforcement by that application in response to an inquiry
utilizing the unique mutable identifier from that application.

18. A data processing system for managing user prefer-
ences, the data processing system comprising:

a processor; and

a memory storing program instructions which when
executed by the processor execute the steps of:

utilizing the processor to generate a unique mutable iden-
tifier in response to a request from an end entity;

obtaining a set of user preferences from the end entity;
associating and storing in the memory the set of user pref-
erences with the unique mutable identifier;

providing the unique mutable identifier to the end entity;
and

providing the set of user preferences associated with the
mutable identifier to any application for enforcement by
that application in response to an inquiry utilizing the
unique mutable identifier from that application;

wherein a unique login identifier corresponds to the unique
mutable identifier; and

wherein the unique mutable identifier may be modified in
response to a request received with the unique login
identifier, the modified unique mutable identifier being
associated with the set of user preferences.

19. The data processing system of claim 18 wherein the set

of user preferences are a set of user privacy preferences.

20. The data processing system of claim 18 wherein the set
of user preferences are a set of user security preferences.

21. The data processing system of claim 18 further com-
prising obtaining credentials of the set of user preferences
associated with the unique mutable identifier;

Wherein the credentials are provided with the set of user
preferences to any application in response to an inquiry
utilizing the unique mutable identifier from that appli-
cation.

22. The data processing system of claim 18 wherein mul-
tiple unique mutable identifiers may be associated with the set
of user preferences.

23. The data processing system of claim 22 wherein a first
unique login identifier may correspond to a first unique
mutable identifier which is associated with a first set of user
preferences, a second unique login identifier may correspond
to a second unique mutable identifier also associated with the
first set of user preferences.

24. The data processing system of claim 18 wherein the set
of user preferences may be modified in response to a request

US 9,159,078 B2
15

received with the unique login identifier, the modified set of
user preferences being associated with the unique mutable
identifier and stored in memory.

25. The data processing system of claim 24 wherein the
modified set of user preferences associated with the unique 5
mutable identifier is provided to any application for enforce-
ment by that application in response to an inquiry utilizing the
unique mutable identifier from that application.

#* #* #* #* #*

16

